

4.5 Typical house archetype examples

So far, we have looked at the big picture to derive LETI's targets for retrofit. But what does this mean in practice? The rest of this chapter sets out a series of typical house archetypes based on average data for each building type from the stock model. We start with an existing pre-retrofit building and then show what happens when the LETI targets are applied. In some cases, we have used the 'constrained' retrofit values, whilst others show the effect of an 'unconstrained' retrofit.

In all cases, we show the pre and post-retrofit space heating demand and Energy Use Intensity as a primary measure of the impact of the retrofit. We also show the overall reduction in actual energy use for each archetype. To make the examples a bit more real, we've provided some signposts to actual case-study retrofits which are similar to the illustrative archetypes.

Retrofit improvements - the package of retrofit measures that have been undertaken to get to the post-retrofit state.

Post-retrofit energy - The total amount of energy needed over the course of a year by the building with a typical occupancy once it has been retrofitted.

Pre-retrofit energy - The total amount of energy needed over the course of a year by the building with a typical occupancy in its pre-retrofit condition.

Key

LETI best practice unconstrained with no additional allowance LETI best practice Additional allowance for homes under 75m²

LETI exemplar

LEII best practice constrained with additional allowance

Delivered - the amount of energy required by the building, this is sometimes called energy consumption, it includes the effect/efficiency of the heat source. This includes the benefit of fabric and systems. Delivered energy is independent of PV generation.

Demand

Space heating demand - the heat energy that the heat pump or boiler generates to heat the home, this figure includes systems losses. The better the building fabric the lower the space heating demand. Space heating demand is independent of the type/efficiency of heat source.

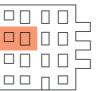
Hot water demand - the heat energy that the heat pump or boiler generates to heat domestic hot water, this figure includes systems losses. Hot water demand is independent of the type/efficiency of heat source.

Total energy demand - The space heating demand; hot water demand; and the electricity required for lights, ventilation and plug loads. Energy demand is independent of the type/ efficiency of heat source.

Energy Use Intensity (EUI) - the delivered energy (sometimes called energy consumption) per m² that is required by the building over the course of a year. In this document the floor area (m²) is the 'treated floor area' unless otherwise stated. This includes regulated (heating, hot water, ventilation and lighting) and unregulated (plug loads). EUI is independent of PV generation (e.g. regardless of how much PV generation is attributed to the building the EUI is the same).

Semi-detached - LETI best practice constrained retrofit

	Targets	Achieved in example
Fossil fuel free	Fossil fuel free home	Fossil fuel free home
Space heating demand	60 (50+10) kWh/m²/yr	51 kWh/m²/yr
Hot water demand	20 kWh/m²/yr	20 kWh/m²/yr
Energy Use Intensity	60 (50+10) kWh/m²/yr	60 kWh/m²/yr
Renewable energy	40% of roof covered in PV	40% of rooftop covered in PV


Detached - LETI best practice constrained retrofit

	Targets	Achieved in example
Fossil fuel free	Fossil fuel free home	Fossil fuel free home
Space heating demand	60 (50+10) kWh/m²/yr	55 kWh/m²/yr
Hot water demand	20 kWh/m²/yr	14 kWh/m²/yr
Energy Use Intensity	60 (50+10) kWh/m²/yr	58 kWh/m²/yr
Renewable energy	40% of roof covered in PV	No PV

Mid-terrace - LETI best exemplar retrofit

	Targets	Achieved in example
Fossil fuel free	Fossil fuel free home	Fossil fuel free home
Space heating demand	20 kWh/m²/yr	16 kWh/m²/yr
Hot water demand	20 kWh/m²/yr	20 kWh/m²/yr
Energy Use Intensity	40 kWh/m²/yr	40 kWh/m²/yr
Renewable energy	40% of roof covered in PV	40% of rooftop covered in PV

Flat - LETI best practice unconstrained retrofit

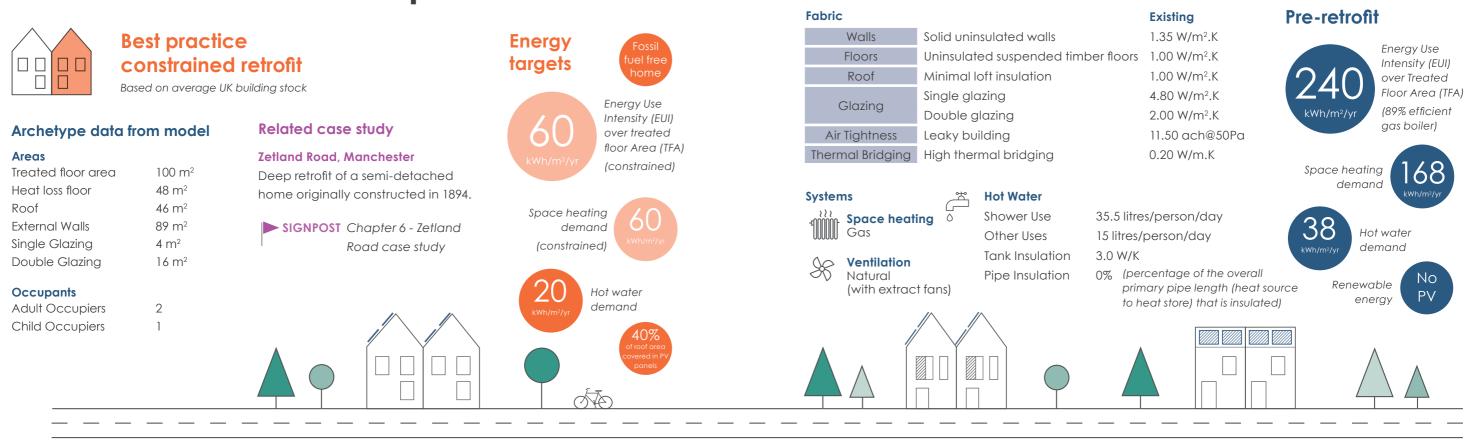

	Targets	Achieved in example	
Fossil fuel free	Fossil fuel free home	Fossil fuel free home	
Space heating demand	50 kWh/m²/yr	26 kWh/m²/yr	
Hot water demand	25 (20+5) kWh/m²/yr	24 kWh/m²/yr	
Energy Use Intensity	50 kWh/m²/yr	49 kWh/m²/yr	
Renewable energy	40% of roof covered in PV	No PV	

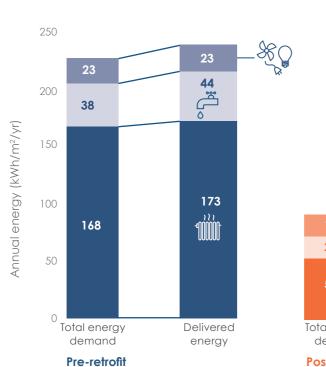
Figure 4.6 - Typical house archetypes from the stock model showing what could be achieved

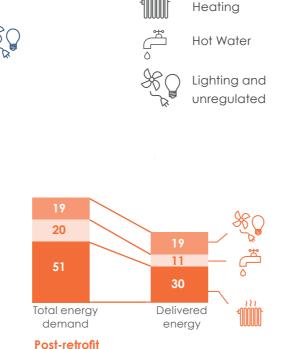
Semi-detached example

Existing specification

Retrofit improvements

Total energy demand


the space heating demand; hot water demand; and the electricity required for lights, ventilation and plug loads.


Delivered energy refers to the energy

consumed by the building for heating, hot water and electricity. It is called Energy Use Intensity when divided by the floor area of the building.

Annex A: How do our homes produce carbon?

Final specification

Fabric		Unconstrained	
Walls	Internal wall insulation	0.18 W/m ² .K	
Floors	Insulated between joists	0.18 W/m ² .K	
Roof	Additional loft insulation	0.12 W/m ² .K	
Glazing	Replace glazing	1.00 W/m ² .K	
Air Tightness	Draught-proofing and sealing	2.00 ach@50Pa	
Thermal Bridging	Mitigated	0.10 W/m.K	

System	IS	Å	Hot water	
- - - - -	Space heating ASHP	0	Use of low flow fitti Shower use	ngs and imp 16 litres/
SE	Ventilation MVHR		Other uses Tank insulation	9 litres/p 1.5 W/K
Renew			Pipe insulation	90% (percento
	Photovoltai 40% of roof		40% of roof area	overall pr length (he to heat st

fitted with PV

centage of the rall primary pipe th (heat source to heat store) that is insulated)

Best practice

Constrained

0.32 W/m².K 0.20 W/m².K 0.12 W/m².K 1.30 W/m².K 3.00 ach@50Pa 0.10 W/m.K

Exemplar

0.15 W/m².K 0.15 W/m².K 0.12 W/m².K 0.8 W/m².K 1.0 ach@50Pa 0.08 W/m.K

Underlined values have been used to achieve the postretrofit EUI and space heating demand

d improved insulation

itres/person/day res/person/day

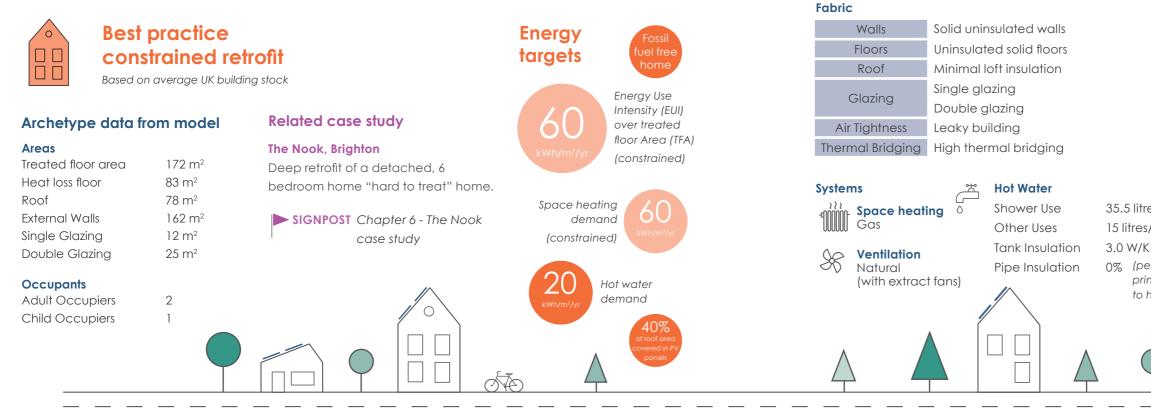
Post-retrofit

Space

heating

demand

Energy Use Intensity (EUI) over treated floor area (TFA)

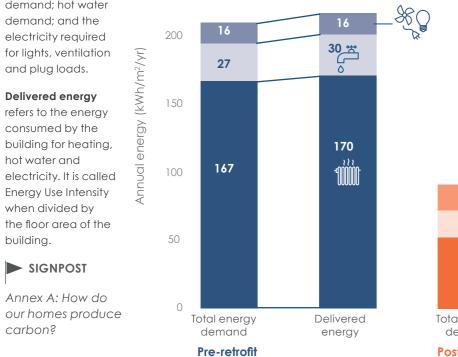

(0% from gas/ fossil fuel)

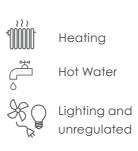
Detached example

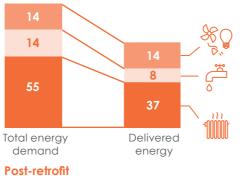
Existing specification

Retrofit improvements

250


Total energy demand the space heating demand; hot water demand; and the electricity required for lights, ventilation and plug loads. Delivered energy


refers to the energy consumed by the building for heating, hot water and electricity. It is called Energy Use Intensity when divided by the floor area of the building.

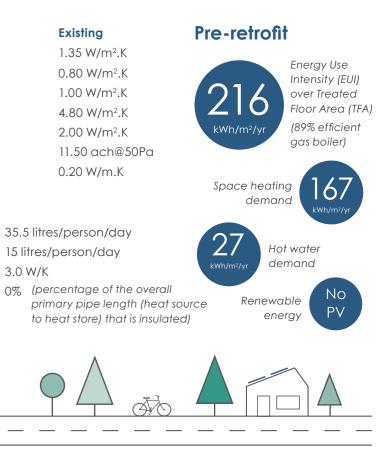

SIGNPOST

carbon?

Annex A: How do

Final specification

Fabric


C

Air

Therm

		Unconstru
Walls	Internal wall insulation	0.18 W/m ²
Floors	No action	0.18 W/m ²
Roof	Additional loft insulation	0.12 W/m ²
Glazing	Replace glazing	1.00 W/m
Tightness	Draught-proofing and sealing	2.00 ach@
nal Bridging	Mitigated	0.10 W/m.

System	s A A A A A A A A A A A A A A A A A A A		Hot water Use of low flow fittings and impro		
10000	heating ASHP		Shower use	16 litres/pe	
			Other uses	9 litres/per	
SE	Ventilation MVHR		Tank insulation	1.5 W/K	
00			Pipe insulation	90%	
Renew	ables			(percentage overall prim	
曹曹	Photovoltai None	CS	No PV	length (hea to heat store insulated)	

Best practice nstrained

~				
Co	nsti	rain	led	

V/m².K	0.32 W/m ² .K
V/m².K	0.80 W/m ² .K
V/m².K	0.12 W/m ² .K
N/m².K	1.30 W/m ² .K
ach@50Pa	3.00 ach@50Pc
V/m.K	0.10 W/m.K

Exemplar

0.15 W/m².K 0.15 W/m².K 0.12 W/m².K 0.8 W/m².K a 1.0 ach@50Pa 0.08 W/m.K

Underlined values have been used to achieve the postretrofit EUI and space heating demand

oved insulation

erson/day erson/day

e of the nary pipe at source re) that is

Post-retrofit

Space

heating

demand

Energy Use Intensity (EUI) over treated floor area (TFA)

(0% from gas/ fossil fuel)

Mid-terrace example

Π

Exemplar retrofit

Based on average UK building stock

Archetype data from model

2

Areas Treated floor area 85 m² Heat loss floor 41 m² Roof 40 m² External Walls 49 m² Single Glazing 1 m² Double Glazing 13 m²

Occupants

Adult Occupiers Child Occupiers

Related case study Haddington Way, Aylesbury A comprehensive retrofit for a row of terraced homes.

> **SIGNPOST** Chapter 6 -Haddington Way case study

Hot water

demand

TA

Existing specification

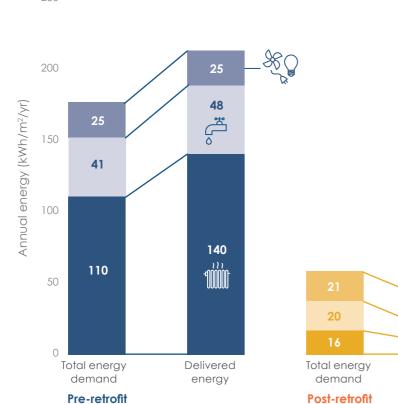
Space heating 0 -90000 Gas

SE Ventilation Natural (with extract fans)

Other Uses Tank Insulation Pipe Insulation

3.0 W/K

Retrofit improvements 250


Total energy demand the space heating demand; hot water demand; and the electricity required for lights, ventilation and plug loads.

Delivered energy refers to the energy consumed by the

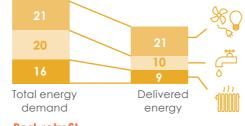
building for heating, hot water and electricity. It is called Energy Use Intensity when divided by the floor area of the

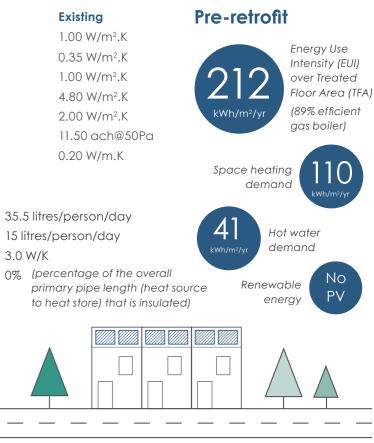
Annex A: How do our homes produce carbon?

Final specification

Fabric		Uncon
Walls	Cavity and external insulation	0.18 W/
Floors	Insulate below new screed	0.18 W/
Roof	Additional loft insulation	0.12 W/
Glazing	Replace glazing	1.00 W
Air Tightness	Draught-proofing and sealing	2.00 ac
Thermal Bridging	Mitigated	0.10 W/

Systems		æ	Hot Water		
2	Space	0	Use of lo	w flow fit	
	heating ASHP		Shower	use	
			Other us	ses	
SE	Ventilation MVHR		Tank ins	ulation	
00			Pipe insu	Jation	
Renew	ables				
▦▦	Photovoltaid 40% of rooft		40% of roof area		


fitted with PV



90% (percentage of the overall primary pipe length (heat source to heat store) that is insulated)

1.5 W/K

Best practice nstrained

Constrained

0.32 W/m².K //m².K //m².K 0.20 W/m².K //m².K 0.12 W/m².K V/m².K 1.30 W/m².K ch@50Pa 3.00 ach@50Pa 0.10 W/m.K //m.K

Exemplar

0.15 W/m².K 0.15 W/m².K 0.12 W/m².K 0.8 W/m².K 1.0 ach@50Pa 0.08 W/m.K

Underlined values have been used to achieve the postretrofit EUI and space heating demand

flow fittings and improved insulation 16 litres/person/day

9 litres/person/day

Post-retrofit

Space

heating

demand

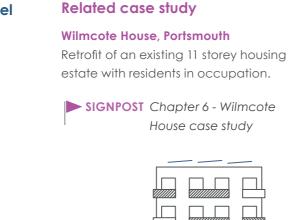
Energy Use Intensity (EUI) over treated floor area (TFA)

(0% from gas/ fossil fuel)

Flat example

4

84


Best practice unconstrained retrofit Based on average UK building stock

Archetype data from model

Occupants

Adult Occupiers Child Occupiers

 $\angle \bigcirc$

5

1000

(additional

allowance)

Heating

Energy

targets

Existing specification

Natural (with extract fans)

П

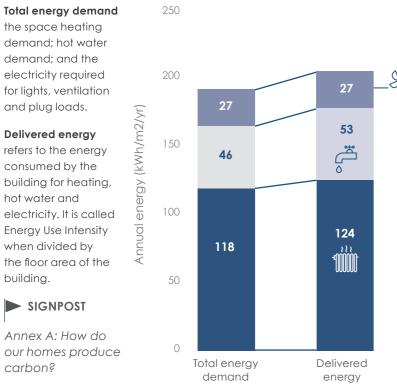
Pipe Insulation

3.0 W/K

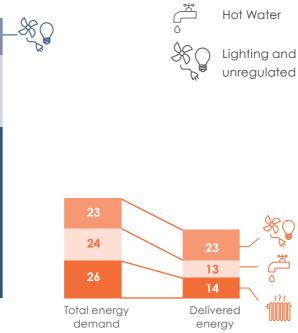
Retrofit improvements

1

1



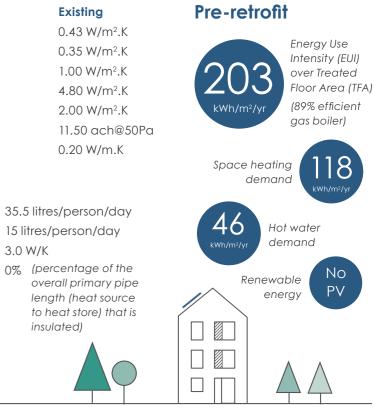
Delivered energy refers to the energy consumed by the building for heating, hot water and electricity. It is called Energy Use Intensity when divided by the floor area of the building.


SIGNPOST

carbon?

Annex A: How do

Pre-retrofit



Post-retrofit

Final specification

Fabric		Uncons
Walls	External wall insulation	0.18 W/
Floors	Insulated below new screed	0.18 W/
Roof	Additional loft insulation	0.12 W/
Glazing	Replace glazing	1.00 W/
Air Tightness	Draught-proofing and sealing	2.00 ac
Thermal Bridging	Mitigated	0.10 W/

System	Systems Image: Displaying state Image: Displaying		Hot Water Use of low flow fittings and im	
100000			Shower use	16 litres,
			Other uses	9 litres/
SE			Tank insulation	1.5 W/K
00			Pipe insulation	90%
Renew	ables			(percent overall p
曹曹	Photovoltaio None	CS	No	length (h to heat s

Best practice nstrained

Constrained

0.32 W/m².K $1/m^2.K$ //m².K 0.80 W/m².K //m².K 0.12 W/m².K $1/m^2.K$ 1.30 W/m².K ch@50Pa 3.00 ach@50Pa 1.0 ach@50Pa //m.K 0.10 W/m.K

Exemplar

0.15 W/m².K 0.15 W/m².K 0.12 W/m².K 0.8 W/m².K 0.08 W/m.K

Underlined values have been used to achieve the postretrofit EUI and space heating demand

proved insulation

s/person/day /person/day

ntage of the primary pipe 'heat source t store) that is

insulated)

Post-retrofit

20

Space

heating

demand

Energy Use Intensity (EUI) over treated floor area (TFA)

(0% from gas/ fossil fuel)

